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ABSTRACT

In a practical treatment of exchange perturbation problems one seeks

the best wavefunction of the form T(1) = A(~O + 41) where A is a symmetry

projection operator, c0 is the eigenfunction of the unperturbed Hamil-
0

tonian, Ho0, and ~1 is the solution to a first order perturbation

equation of the form (H0 -E0 )41
+ (V-E1 )P0 = (l-A)F1 Most previous

treatments correspond to assuming that F1 = Z v (va + vjV)0
v,j JJ J

Here v labels the irreducible representation, j labels the row of

the representation. The choice of the constants va. and v depends
J ~~J

tone of the authors, (JOH), would like to acknowledge research support

from NASA Grant NGL 50-002-001 to the University of Wisconsin Theoretical

Chemistry Institute and ARPA Grant DA-ARO-D-31-G179 to the Quantum Institute

of the University of California, Santa Barbara. The other author, (DMC),

is grateful for research support from NSF Grant GP-23764 to the University

of California, Santa Barbara.



ii

upon the particular method. In this paper the function F1 is deter-

mined so that the resulting T(1) is equal to the exact wavefunction

or any given function having the symmetry of A . It is hoped that

this analysis will suggest desirable functional forms for F1 to use

in practical problems. Attempts to determine ~1 by optimizing the

sum of the first and second order energies were not successful.
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There are a great many different theories of exchange perturbations

(for reviews, see Refs. (1)-(6)) and most of them would give the exact

energy and wavefunction if the treatment were carried to an infinite

order. However, in practice, the calculations are sufficiently difficult

that the wavefunction is usually truncated after the first order (for

examples, see Refs, (7) and (8)). Unfortunately the different methods

give different values for the second order energy E2 and different

values for E(1) , the expectation value of the Hamiltonian correspond-

ing to the zeroth plus first order wavefunction. In the present paper

it is shown that the zeroth plus first order wavefunction obtained by

optimizing the basic equation which is used in most exchange perturbation

treatments is the exact wavefunction for the perturbed system and E(1)

is the exact energy! On the other hand, there is no unique value of E

since it can be made arbitrarily large or small. We hope that the equa-

tion which we use for determining the optimum first order function will

serve as the basis for improving the techniques which can be used to

solve practical exchange perturbation problems.

The basic difficulty inherent in exchange perturbation problems is

*
that the symmetry group corresponding to the perturbed Hamiltonian

If the Hamiltonian is spin-free, then the energy eigenfunctions (which

we call wavefunctions in the present paper) are really the spin-free

components of the complete wavefunction. The construction of projection

operators to be used in the calculation of the spin-free components of

a complete wavefunction is discussed in Refs. (9)-(14).
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H = H0 + V is different from the symmetry group corresponding to the

unperturbed Ha iltonian' 0 Thus,i A is the idemp6tent projection

;operator corresponding to a part'icutar irreducible representation (or

to'a particular row of this irreducible representation) of the symmetry

group of the 'perturbed' system, then" A commutes with H but not with

H This leads to the relation

A H -H A V A -A (1)

The right-hand-side of Eq. (1) appears to be first order whereas the

left-hand-side appears to be zeroth order. Thus, the concept of order

is not clearly defined by the "power of V" as in the ordinary Rayleigh-

Schrodinger perturbation theory.

Exchange perturbation treatments start with a zeroth order

Schrodinger equation

(H
0

-E0)~O (2)

Here E
0

'is taken to be the zeroth'order energy, but T0 A ,0 ' rather

than 0 itself, is generally taken to be the zeroth order wavefunction.

We seek approximations to the exact 'energy E and the exact wavefunction

'='"A' ' of! th'eperturbed system. n moost exchange 'perturbation treat-

m'ents', each rd'er of the -perturbed wavefunction has the symmetry of T

Thus, we seek a first order function 1 such that the first order

wave'function i'; '1 = A:l ' The wavefunction correct through the first

o'rder':is'then" ' (l)'="-A(4 +')" 'and ' ' " ' 

0 1 01

"'~ ~ ~ ~ ~~ ~I'~' ~ 
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' .."' Three observations:

(a) If O:ris-,r-eplaced:byr '.'.'+ .l-(-lA)S. where: '.S is an

arbitrary function, then E(l) remains unchanged. This is because

0" )i- ' ' 
occurs in Eq. (3) only in the form A0 .

(b) If V is replaced by either V' = V + (1-A)T or V" = V + T(l-A),

where T is an arbitrary function or operator, then E(l) remains un-

changed . Similarly, H '-;can be repl'aced by; either H - (l-A)T or

1/
Ho^, -T(1I-A),. ri : is ~ ,' :~ ,.r.ed :.. tl '.'::,~:.:-o " ' : ' -: ~?' :''. - ..

(c) If l isvaried withput.constraintsk!, theT optimum (or

stationary) value of E(l), ,£s -obtained'.when p satisfies the equation

(H - E(l))A(G
0
+ 

1
) = 0 . In this ~case it'is clear that Y(l) = T

and:E (l) -.E ,:pSuchj ia :pr0.cedur.e~.~orresponds; to':the.,usual, variational

:','-: .. :' met'hod:.~,? :-?,.i: ': .......

In the Appendix, Eq., (3) is rewritten in an equivalent form and expanded

.. into terms which corres~p9nd..tt the!,apparent first, second, ... orders.

It is then shown that the optimum expression for 41 cannot be obtained

- -y varying i g 'ss'to akeith''u''-'trh- '"firs't anda second order

.:i~'.s"~' ~ ~ sta '-- 'd '.' .......
energies stationary.; ....

!: . L : ,\,* ,% .I L;;' I;'1. ' 3;:..:'.!,'i? '"J''e .) lI .;.}:."', r'_:; ! i ;, ..;.......','.............'......'...............'..........[.';:' . . . "' 

This does not necessarily mean that only the component of V which
J R ;> ~~~. |t.r .... .. !-. i' .. .! !K". ' 'J;3 . .i ". i J.................:.

has the symmetry of A determines the value of E(l) . For example, if

A = (1/2)(l-P), then it is the (1-A) component of V which enters into
._:.fi ',!, '-,': r':J,JJ. u ':*. .. :,,i ;,@.L:,~-,i' ....-i.; 'y; l. i yr ;:,-fo.£ ]£-,.'..L.;..'.!¢ n: !5 ."J.[?:,l?.~[ ~:Lr;.-.:.^::'" -

Eq. (3) since AVAO is equal to the product of (l-A)V times AO
, .< 'f3,,:, . i S! .. - " .- i i ~t .,. * j

- - - - - - - - - - - - - -

.~~~~~. _!, . .. . .. _ _ 9 ._ !, ...

;:'. fr. > ;i,~>!. ;3s:L7.1 ,?~nr_ i' >r7.+; *.' :in s-se i: .-v '3|i:t 7;> tI., ($-.LwS ,', 

Except that it must satisfy the same boundary and continuity conditions
.V-s ftT -- o L. a~i.|il4 :1: jSCirJr y; i;s. -,; C) -e ,* a i'. .'! _:,,g,, Iw:

as are imposed upon acceptable wavefunctions.

:.!:: 7 ~0' . - e -.% Y ' . " -:.. . .' 1 .:.. f7! , .
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Most Rayleigh-Schrodinger type treatments are based upon rewriting

the perturbed Schrodinger equation in the form

(H-E)AY = A[(H0 -E0 ) + (V-E1) - E2 - 0 + + ') = 0

(4)

This leads to a first order equation

(H
0
-E 0 )c1 + (V - E1) 0O = (l-A)F1 (5)

#
where F is an arbitrary function and E is the constant which

1 

makes Eq. (5) mathematically consistent,

E= < 0 V 0O - (1-A)F1 (6)>
=1ql (6)E1

The various perturbation schemes differ in their choice of F1 In
1~

most of the schemes that have been proposed, F1 is taken
t t

to have the

form

F = VA .V(. + V) (7)
1 vj 

Here the v labels the irreducible representation and j labels the

row within that representation. The particular choice of the constants

- - - - - - - - - - - - - -

tThe various choices of F1 and the corresponding higher order functions

F2, F3, ... which lead to the various perturbation schemes proposed in

the literature are discussed in detail in Ref. (15). This paper also

presents detailed calculations for H2 comparing the results for the

different theories.

tRef. (16) gives the values of Va. and v. corresponding to various
J ~~~J

proposed treatments. It gives a thorough discussion of the symmetry

problems involved in exchange perturbations. Also, it presents accurate

calculations for H2 comparing the results for the different theories.
- - - - - - - - - - - - - -
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Va and . varies from method to method.,. Expediency is the only
J J'

justification for limiting the choice -of F.i in-this manner. In the

present paper, we seek to optimize. F1 -..

Actually, we can show that if T(1) is an arbitrary given

function having the symmetry T(1) = AY(1) and E1 is an arbitrary

given value, then it is always possible to find a function F such
, . '- .~~~~ . ,, 1 ,.,- 

that Eq. (5) is satisfied by the first order function

''< <' .' .= - d0'+ '(1) + (l-A)'G - '' (8)

Note that Eq. (8) is consistent with the'requirenment that T(1) = A(40 + )

so that T(1) can be considered to be the perturbed wavefunction

truncated after the first order. In Eq. (8) , G is any function

such that
- ~~~~.,., . t."C .. '. ' ,.:" . ', , '.!. ' .. ." . : . · - .,'.'..

.AF 0 ., . (9)

; . ,. * , , ., .,, -' ... . L . ' .: ' . . ..~? " .. . . . .'

If AF = 0 , then Eq. (5) (making use of Eq. (8)) gives the identity

: ,.- . . .. , .,r ', .. · ' .... .' :... ',.' '. · . ;,.. ;,

F1 - (V-E1)q6 + (H0 -EO) [(l) + '(1-A)G]; - - (10)1 ll~~~~~~ 0 0 0 ~~~~~(10)

Making 'use of E'q.-' (1-), the 'statement 'that' -AF '= O' can be written in

thef form - ' ' 

~~~~~~. -. . ;: ,. ; , ...... .: ~'u.'.' , ,:. ~.......-:

A V (1-A)G = A X (11)
,! f: ; r.¢.:;";:: '..* Ji ,'i -1; ', ;:',si..-

where
.... · ; ..- ' -;.: " l : ' i' :~ ;. i',. ,~

x =(V-E9 + (H0 -E0) (l) (12)
i, , 5 n ,, i, *, C 'i 1 - ,O .. !,,

As will be shown below, for a two particle system (or one containing

.only gerade and ungerade symmetries), .Eq 1'1'.' i" .. 'l'-:'.' . ely determines ' .
only gerade and ungerade'symmetries), Eq.~ (11) completely~ determines

I ". :::~; [ .,', ' .,' , ...;' .
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(1-A)G. For a perturbed system with three or more particles (or having

more than two symmetry elements), it is always possible to find a function

(1-A)G such that Eq. (11) is satisfied, but the solution often is not

unique. For such cases, AF
1

and A I are still uniquely determined

by the specification of Y(1) and E1 , but the functions F1 and

1 are not uniquely specified.

The optimum function F
1 would be determined by Eqs. (10)-(12) in

which y(1) is taken to be the exact perturbed wavefunction Y . In

this case the E(1) of Eq. (3) becomes the exact energy E

EXAMPLE: The S2 Permutation Group

The simplest physical examples of exchange perturbations are the

interactions of a hydrogen atom with either another hydrogen atom or

else a proton. In either case, the symmetry group of the perturbed

system is the S2 permutation group having the elements 1 and P . This

group has two one dimensional irreducible representations, gerade (g)

and ungerade (u) . The corresponding projection operators are:

gA = (1/2)(l+P) and UA = (1/2)(1-P). It is convenient to let the super-

scirpt g or u designate the symmetry component of a function, for

example: gV = gA V . For this S group, we must distinguish two cases:
2

1) The state under consideration has gerade symmetry so that A E gA

Since V = gV + UV and since the product gVUG is ungerade and uV UG

is gerade, Eq. (11) has the unique solution,

(1-gA)G = (l/UV)gX . (13)

2) The state under consideration has ungerade symmetry so that A E UA .

Similarly, since gVgG is gerade and UVgG is ungerade, Eq. (11) has

the unique solution
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9~~~~~~~~~~~~~~~r . ,... " ' ·[.'\f.. 

(1-UA)G = (l/Uv)ux (14)

'e' ( ,',"q.+ ' 'i .- ':; .... , ....(£i\,.. ,'.-N' -'V CC~~~~ ~~~~.C *... C..£:

If Y(l) is a given function and El is a given value then F is

'~~~~~~~ ~'· ..... .....i ¢ %1 .3 '.2.'~ ·Y !3 '-{~ '' v~r.;:.'.. .--ZC~S ?'O'. 2lf } .i' C<.- " f~
: ..'niqey'e b'E~q. (10) ad 'uniquely given bytq '1)an ' is uniquely givefin by Eq. (8)

EXAMPLE: The S3 Permutation Group

."t.i:";' ':.':..'~" ~ii.Z 3 ' :? fV ' .: I r_;-. T JZ..t. 1 ,.: .' ',:; i [D::. %.s7'i;

The exchange of three ,like particles, as for example in the inter-
rt*.~~~~~~~~~~ - , ,- t. .j '.JA! ;f,, E f ;- ..CC J C,;7- ,t; ., Ii.i}; 

action of H with H , corresponds to the S symmetry group having
2 C ' a-lC . .LCC P

six symmetry elements. Its. three irreducible representations correspond

.- to the'Yboung diiagramsi.' n ...(which we

refer to as 1, 2, and 3 respectively)., The projectors for the one

' dimensional 'r!presentations 1 a'id 3':are' r .. 

CC V.. .~~~ ~~''* P1 .r +PI'+ -j3 (15)

""~ -' " " .9 P1'2~("'126),( -1 : P2. - P P-. -P 2 -.P 2 (15)

".'-12- ,- 23f .': 3\. P' 123 :132
J 2.1.~~~~~

We include the projector A for the sake of completeness even though
.-,'- r^; t ,:," .-) :,/J 1 . ,.-',',,:,'.:1: i3,L::'.:) '. '.:C; .';'. ,' C..:C.;. ~'. .;.. ' . ,_

a spatial wavefunction which transforms as A is not Pauli-allowed.

The two dimensional representatipn 2 .has the two projectors
·~~~~~~~~~~~~~~~~~~~~~~~~~~~~~, , C.

2A +'~~~~~~~~~ -',x:, f' P" . .

CI" £c;i~f ~ (NtA 1 = (1/6)(2 + 2P1 2 83 P23 - 1

'C r.'': CC' ~C~(~.2 j C -*,(17)
~~~~~~~~~- -i..,r' 3j. 't "..... (.-t ' 'iX)'WA 3TC~.0fl;b.-([.tt' J.''rC~t'C §3S'tS rl'.I? m.:...I............... '.35;'j ~,

A (1/6)(2 - 2P"2 + 13 +P 2 3 '123- P 3I 2 ) (18)

and the two shift operators - .. .....
,- ~. t~ t " 0

': .C . . :, CL I :- ..'. ~. . : ~ X C t\ ' ......., ',:' .;'L'; -t~ :?-~il's 0'.:; ~,?,: ;. i.-^ _ -J" LDf,'F) : ,.[;.. .[C-
:;' ~

r" i'.Uzcf 3 _ :!:.
CflCC *... . .~ -'~ .. ' V p

Here we a te using thEa convention VA. A- 6 6 A .,Note that.
-q'? ~ 4,. · '2r ",a tc ' SJ

4
rj~i ~ ~.-~~ i C

in Goscinski and Lowdin's Ref. (13) notation, the rows and columns are

interchanged.
- - - - - - - - - - - - - -
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2A 2 (1/12)1/2 +
12 (1/12) (P1 3 - P2 3 + P1 2 3 - P1 3 2 (19)

2A21 = (1/12) /2(P1 3 - P2 3 - P1 2 3 + P1 32 (20)

The projector corresponding to the character of 2 is, of course,

2A = A + A22 = (1/3) (2 - P123 132) (21)2Al 2A 2(2 -P1 2 3
- P1 3 2) (1

After reducing the representation of VG to its irreducible com-

ponents (and using the notation A.. V = V..), the four symmetry

components of Eq. (11) are

1X = 1/2[ Gl1 Vll + G2 1 V2 1 + G2 2 V2 2 + G12 V1 2 ] + G V (22)

2 1G~21 +1 2 /2 222 2 3 32

2Xll =1G 2Vll + 1/ G2 2 V2 22 G12 V1 2 ] + G22 V + G V2 2 (23)

11 11 22 ~22 121 12+ 22 32

2X22 = 1G 2V22 + 1/2[ G 122 + 2G212V12] + 2 Gl13V + 3G V11 (24)

x 1G3V+12 2G 2 2G 2 +2G 2 2G 2 25
3X = G V + 1/212Gl1 V2 2 - G2 1 V1 2 + G 2 2 Vl l - G 1 2 V2 1] (25)

In addition, we obtain the equation corresponding to the character pro-

jector A

2 X = 1G 2V + 3G 2V (26)

For each of the symmetry cases Eq. (22), or (23) or (24) or (25), provides

one condition on the four independent components of G ( G, 2Gll, G2 2,

and 3G).

_ - - - - - - - - - - - - -

Note that 2G21 = 2A21 2Gll and 2G12 = A12 2G22 so that 2G21 and 2G12
21 21 11 12 12 22 21 12

can be determined from a knowledge of 2G and G2 2 respectively.
11 22
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fence G and (1-A)G can be chosen in an infinite number of ways.

On the other hand, if we used the character projector to express

the symmetry of the two dimensional representation, we would obtain

from Eq. (26) the unique solution for (1 - 2 A)G , corresponding to

wavefunctions which have the 2 symmetry,

2. .

(1 - A)G = X V (27)

Thus, some simplification in the determination of (1-A)G and in the

equation (5) for the determination of 1 may result from the use of

the character projector 2A . However, the wavefunction for the per-

turbed system has the symmetry corresponding to a particular row of the

=2
irreducible representation. Thus, P(1) = All(k~0 + c1) or

T(1) = A22(k40 + '1) . As far as the equations for 1X and 3X are

concerned, no simplification results from trying to use the A projector.

For wavefunctions having either the 1 or the 3 symmetry, a particular

solution for (1-A)G results from choosing Gll and G22 to be zero11 22

(hence 2G21 = 0G12 = ) . In this case, Eqs. (22) and (25) give
21 12

(1 - 1A)G 1X / 3V and (1 - A)G X / V (28)

We believe that our analysis has shed a bit of light on the structure

of the exchange perturbation equations. It remains to be seen how this

analysis will be used to develop better functions F which will make
1

the practical solution of exchange perturbation problems easier or more

accurate.
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APPENDIX

An Attempt to Determine 01 a- Oltimizing E1 + E2

It is not easy to determine the various orders of perturbation

energy from Eq. (3). For example, the apparent zeroth order energy

would seem to be

< 0 < Ao h0A *o> / A o
>

(Al)

instead of E0 This difficulty disappears if we rewrite Eq. (3) in

the form

E<
0
±Ai+(l-A) L(AH

0
+HoA)+(AV+VA) ]

0
+A4 +(-A) ¢ >

E(l) = 
2<, 0+

1
IA 1 +-0-1> (A2)

Here we are expressing the first order function- ~1 as the sum of

its two components A1 and (l-A)i, which <an be varied separately.

In Eq. (3), the zeroth order operator (Ao +-HoA) and the first

order operator (AV + VA) are still HIermitlaran. Howeer, we would have

obtained the same conclusions if we had used the non Hermitian zeroth

and first order operators AH0 and AV (or equivalently, %0A and

VA) . Our conclusion is that we cannot obtain an optimum first order

function *1 by varying the sum of the first and second order eietgies.
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Fr convenieice, let us normalike sothat

<% A 1%0> - 1

Expanding the right hand side of 4. (A2)' and grouping the terim accord-

ing to their apparent order of perturbation, and l1tting c.c. denote

the conjugate complex we obtain:
I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

E1 l C + B )1 1 1 (3

1E E' + D - d (A4)
2 2 2 2 1

Here E is the usual Heitler-London first order energy

HL 1
EL -2<O IAV +.VAIOO> (A5)

1 2. <40IAV+VI>

The additional first order energy term is

B1 = .t-Ai1 + (1-A)o.-I' ---E)AIo> + c.c.] (A6)

The second order energy terms are

E2 = <A4 1 lH0 -"~4z
>

HA7)

+2 [<(1 + A) 0V - EHL A,1 > + c.c.]

[<(1 - A)I< O - E0)A
1

+ (V - EHL)AO> + c.c.]
'D2 '2 [<:iX i 0 1 

(A8)
·~~~~~

,"aid the third term is B d where

d <,O IA.1> + c.c. (A9)



Although the function (l-A)q1 does not affect E(1), by varying (l-A)i

values of E
1

and E
2

can be made arbitrarily large or small. This

follows from the fact that the expressions for E3 and E
2

are linear

in (I-A) 1 -

We might still expect to obtain a good expression for 1 by

varying A%1 (while holding (l-A)p
1 constant) so as to make the sum of

E
1
+ E

2
stationary. In order for the resulting equation to be mathe-

maticatiy consistent, B1 must be equal to zero or E = E
1

The

resulting equatiu for the first order function 01 = AO, + (l-A)01

(where the AO1 has been optimized while (l-A)01 has been heJd fixed) is

then

A[(H
0

- E0 )%1 + (V - E1 )O0]
(AS0)

+ (H - E0)A( + (l-d)
0

) + (V - EH)A = 00 0 1 0 1 0

If now Eq. (A10) is multiplied by (1-A) and we make use of Eq. (1), we

obtain an equation of the form

(l-A)(H0 - E0)AY = 0 (All)

where Y = O1 - do0 . Again, making use of Eq. (1), Eqo (All) can be

expressed in the form

(AV - VA)AY = 0 (A12)

However, the basic premise in perturbation theory is that V does not

commute with A , so Eq. (A12) can be true only if AY = 0 . Thus,

(A13)Ah = d Ao
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Multiplying Eq. (A13) by ,0 ' integrating and remembering the defini-

tion of d , we see that d = 0 and so A~
1
= 0 . Thus, we conclude

that Eq. (A10) does not have a (useful) solution. As a result, we

cannot obtain an optimum first order function c1 by making use of

Eqs. (A3) and (A4) for the first and second order energies.
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